

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

CONTRA bT^µ- CONTINUOUS FUNCTION IN SUPRA TOPOLOGICAL SPACES

K.Krishnaveni*, M.Vigneshwaran

* Department of Mathematics Kongunadu Arts and Science College Comibatore. Department of Mathematics Kongunadu Arts and Science College Comibatore.

ABSTRACT

In this paper, we introduce the concept of contra bT^{μ} - continuous functions and contra bT^{μ} -irresolute. We obtain the basic properties and their relationship with other forms of contra supra continuous functions in supra topological spaces.

KEYWORDS: contra bT^{μ} - continuous function ,contra bT^{μ} -irresolute, almost contra bT^{μ} - continuous function and perfect contra bT^{μ} -irresolute.

INTRODUCTION

In 1983 Mashhour et al [6] introduced Supra topological spaces and studied S- continuous maps and S^* - continuous maps. In 1996, Dontchev[3] presented a new notation of continuous function called contra- continuity in topological spaces.

The purpose of this paper is to introduce the concept of contra bT^{μ} - continuous functions and contra bT^{μ} -irresolute and studied its basic properties. Also we defined almost contra bT^{μ} - continuous functions and perfect contra bT^{μ} -irresolute function and investigated their relationship to other functions in supra topological spaces.

PRELIMINARIES

Definition 2.1[6,8] A subfamily of μ of X is said to be a supra topology on X, if

(i) X, $\phi \in \mu$

 $(ii) \ if \ A_i \ \in \ \mu \ for \ all \ i \in \ J \ then \ \cup \ A_i \ \in \mu.$

The pair (X, μ) is called supra topological space. The elements of μ are called supra open sets in (X, μ) and complement of a supra open set is called a supra closed set.

Definition 2.2[8]

(i) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is defined as $cl^{\mu}(A) = \cap \{B : B \text{ is a supra closed set and } A \subseteq B \}$.

(ii) The supra interior of a set A is denoted by $int^{\mu}(A)$ and defined as

 $\operatorname{int}^{\mu}(A) = \bigcup \{ B : B \text{ is a supra open set and } A \supseteq B \}.$

Definition 2.3[6] Let (X, τ) be a topological space and μ be a supra topology on X. We call μ be a supra topology associated with τ if $\tau \subset \mu$.

Definition 2.4[8] Let (X, μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition 2.5[5] A subset A of a supra topological space (X, μ) is called bT^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is T^{μ} - open in (X, μ) .

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

Definition 2.6[5] Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called bT^{μ} - Continuous if $f^{-1}(V)$ is bT^{μ} - closed in (X, τ) for every closed set V of (Y, σ) .

Definition 2.7[5] Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called bT^{μ} -irresolute if $f^{-1}(V)$ is bT^{μ} -closed in (X, τ) for every bT^{μ} -closed set V of (Y, σ) .

Definition 2.8[3] Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called contra Continuous if $f^{-1}(V)$ is supra closed in (X, τ) for every supra open set V of (Y, σ) .

Definition 2.9[5] A supra topological space (X,μ) is called ${}_{bT}T_c^{\mu}$ -space. If every bT^{μ} -closed set is supra closed set.

CONTRA bT^µ- CONTINUOUS FUNCTION

Definition 3.1 A function $f : (X, \tau) \to (Y, \sigma)$ is called contra bT^{μ} - continuous functions if $f^{-1}(V)$ is bT^{μ} - closed in (X, τ) for every supra open set V of (Y, σ) .

Example 3.2 Let $X = Y = \{a,b,c\}$ with $\tau = \{X,\phi,\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Here f is contra bT^{μ} - continuous functions.

Example 3.3 Let $X = Y = \{a,b,c\}$ with $\tau = \{X,\phi,\{a\}$ Let $f : (X, \tau) \to (X, \tau)$ be the identity function. Here f is not contra bT^{μ} - continuous functions. Since $V = \{a\}$ is supra open set in (Y, σ) , $f^{-1}(\{a\}) = \{a\}$ is not in bT^{μ} - closed set in (X, τ) .

Theorem 3.4 Every contra continuous function is contra bT^{μ} - continuous.

Proof Let $f: X \to Y$ be contra continuous. Let V be any supra open in Y. Then the inverse image $f^{-1}(V)$ is supra closed in X. Since every supra closed is bT^{μ} - closed, $f^{-1}(V)$ is bT^{μ} - closed in X. Therefore f is contra bT^{μ} - continuous.

Remark 3.5 The converse of the above theorem is not true and it is shown by the following example.

Example 3.6 Let $X = Y = \{a,b,c\}$ with $\tau = \{X,\phi,\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Here f is contra bT^{μ} - continuous functions and not contra continuous. Since $V = \{a\}$ is supra open set in (Y, σ) , $f^{-1}(\{a\}) = \{a\}$ is not supra closed in (X, τ) .

Remark 3.7 The composition of two contra bT^{μ} - continuous map need not be contra bT^{μ} - continuous. Let us prove the remark by the following example.

Example 3.8 Let $X = Y = \{a,b,c\}$. Let $\tau = \{X,\phi,\{b\},\{a,b\}\}$, $\sigma = \{Y,\phi,\{a\}\}$ and $\gamma = \{Z,\phi,\{b\},\{a,b\}\}$. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\gamma)$. Define f(a) = a, f(b) = b, f(c) = c and g(a) = c, g(b) = b, g(c) = a. Both f and g are contra bT^{μ} - continuous. Define gof: $(X,\tau) \rightarrow (Z,\gamma)$. Hence $\{b\}$ is a supra open set of (Z,γ) . Therefore $(gof)^{-1}(\{b\}) = g^{-1}(f^{-1}(\{b\})) = g^{-1}(\{b\}) = \{b\}$ is not a bT^{μ} - closed set of (X,τ) . Hence g o f is not contra bT^{μ} - continuous

Theorem 3.9 If $f:(X, \tau) \to (Y, \sigma)$ is contra bT^{μ} - continuous function and $g: (Y, \sigma) \to (Z, \gamma)$ is supra continuous function then composition gof is contra bT^{μ} - continuous function.

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

Proof Let V be supra open set in Z. Since g is supra continuous, then $g^{-1}(V)$ is supra open in Y. Since f is contra bT^{μ} - continuous function, then $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is bT^{μ} - closed in X. Therefore gof is contra bT^{μ} - continuous function.

Theorem 3.10 If $f:(X, \tau) \to (Y, \sigma)$ is bT^{μ} - irresolute function and $g: (Y, \sigma) \to (Z, \gamma)$ is contra bT^{μ} - continuous function then composition gof is contra bT^{μ} - continuous function.

Proof Let V be supra open set in Z. Since g is contra bT^{μ} - continuous function, then $g^{-1}(V)$ is bT^{μ} - closed in Y. Since f is bT^{μ} - irresolute function, then $f^{-1}(g^{-1}(V))$ is bT^{μ} - closed in X. Therefore gof is contra bT^{μ} - continuous function.

Remark 3.11 The concept of bT^{μ} - continuity and contra bT^{μ} - continuity are independent as shown in the following example

Example 3.12 Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Here f is bT^{μ} - continuous but not contra bT^{μ} - continuous function, since $V=\{a\}$ is supra open set in Y but $f^{4}(\{a\}) = \{a\}$ is not bT^{μ} - closed set in X.

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=c, f(b)=b, f(c)=a. Here f is contra bT^{μ} - continuous but not bT^{μ} - continuous function, since $V=\{b,c\}$ is supra closed set in Y but $f^{4}(\{b,c\}) = \{a,b\}$ is not bT^{μ} - closed set in X.

Theorem 3.13 If $f:(X, \tau) \to (Y, \sigma)$ is contra bT^{μ} - continuous function and X is ${}_{bT}T_{c}^{\mu}$ -space, then f is contra supra continuous.

Proof Let V be supra open set in Y. Since f is contra bT^{μ} - continuous function, then $f^{-1}(V)$ is bT^{μ} - closed in X. Since X is ${}_{bT}T_{c}^{\mu}$ -space, We have every bT^{μ} - closed set is supra closed in X, then $f^{-1}(V)$ is supra closed in X. Therefore f is contra supra continuous function.

Definition 3.14 A map $f:(X, \tau) \to (Y, \sigma)$ is called almost contra bT^{μ} -continuous function if $f^{-1}(V)$ is bT^{μ} -closed in (X, τ) for every supra regular open set V in (Y, σ) .

Theorem 3.15 Every contra supra continuous function is almost contra bT^{μ} -continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a contra supra continuous function. Let V be a supra regular open set in (Y, σ) . We know that every supra regular open set is supra open, then V is supra open in (Y, σ) . Since f is contra supra continuous function, $f^{-1}(V)$ is supra closed in (X, τ) . We know that every supra closed set is bT^{μ} - closed, implies $f^{-1}(V)$ is bT^{μ} - closed in (X, τ) . Therefore f is almost contra bT^{μ} - continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.16 Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a\}, \{a, b\}\}$.f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Here f is almost contra bT^{μ} - continuous, but it is not contra supra continuous, Since $V=\{a\}$ is supra open in Y but $f^{4}(\{a\}) = \{a\}$ is not supra closed in X.

Theorem 3.17 Every contra bT^{μ} - continuous function is almost contra bT^{μ} - continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a contra bT^{μ} - continuous function. Let V be a supra regular open set in (Y, σ) . We know that every supra regular open set is supra open, then V is supra open in (Y, σ) . Since f is contra bT^{μ} - continuous function, $f^{-1}(V)$ is bT^{μ} - closed in (X, τ) . Therefore f is almost contra bT^{μ} - continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

http://www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

Example 3.18 Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}, \sigma = \{Y, \phi, \{a\}, \{a, b\}\}$.f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Here f is almost contra bT^{μ} - continuous, but it is not contra bT^{μ} - continuous, Since $V=\{a\}$ is supra open in Y but $f^{4}(\{a\}) = \{a\}$ is not bT^{μ} - closed in X.

Theorem 3.19 If a map f: $X \rightarrow Y$ from supra topological space X into a supra topological space Y. The following statement are equivalent.

- (a) f is almost contra bT^{μ} continuous.
- (b) For every supra regular closed set F of Y, $f^{-1}(F)$ is bT^{μ} open in X.

Proof (a) \Rightarrow (b)

Let F be a supra regular closed set in Y, then Y-F is a super regular open set in Y.

By (a) $f^{-1}(Y-F) = X - f^{-1}(F)$ is bT^{μ} - closed set in X. This implies $f^{-1}(F)$ is bT^{μ} - open set in X. Therefore (b) holds. (b) \Rightarrow (a)

Let G be a supra regular open set of Y. The Y-G is supra regular closed set of Y. By (b) $f^{-1}(Y-G)$ is bT^{μ} - open in X. This implies Y- $f^{-1}(G)$ is bT^{μ} - open in X, which implies $f^{-1}(G)$ is bT^{μ} -closed set in X. Therefore (a) holds.

Definition 3.20 A Space (X, τ) is bT^{μ} - locally indiscrete if every bT^{μ} - open $(bT^{\mu}$ - closed) set is supra closed(supra open) in (X, τ) .

Theorem 3.21 If $f:(X, \tau) \to (Y, \sigma)$ is bT^{μ} - continuous function and X is bT^{μ} - locally indiscrete, then f is contra bT^{μ} - continuous.

Proof Let V be supra open set in Y. Since f is bT^{μ} - continuous function, then $f^{-1}(V)$ is bT^{μ} - open in X. Since X is bT^{μ} - locally indiscrete, then $f^{-1}(V)$ is supra closed set in X. We know that every supra closed set is bT^{μ} - closed set . Therefore $f^{-1}(V)$ is bT^{μ} - closed set in X. Hence f is contra bT^{μ} -continuous function.

Theorem 3.22 If $f:(X, \tau) \to (Y, \sigma)$ is a surjective bT^{μ} -irresolute and $g: (Y, \sigma) \to (Z, \gamma)$ be any function such that gof: (X, τ) \to (Z, γ) is contra bT^{μ} -continuous function, iff g is contra bT^{μ} -continuous.

Proof

Suppose gof is contra bT^{μ} -continuous, Let V be a supra closed set in Z, then $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ is bT^{μ} -open in (X, τ). Since f is surjective and bT^{μ} -irresolute, then $f(gof)^{-1}(V)=f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is supra N-open in (Y, σ) . Hence g is contra bT^{μ} -continuous function.

Conversely, Suppose g is contra bT^{μ} -continuous, Let V be supra closed in Z, then $g^{-1}(V)$ is bT^{μ} -open in Y. Since f is surjective and bT^{μ} -irresolute, then $f^{-1}(g^{-1}(V))$ is bT^{μ} -open in X. Hence gof is contra bT^{μ} -continuous function.

Theorem 3.23 If $f:(X, \tau) \to (Y, \sigma)$ is a bT^{μ} -continuous and $g:(Y, \sigma) \to (Z, \gamma)$ is contra bT^{μ} -continuous function and (Y, σ) is ${}_{bT}T_{c}{}^{\mu}$ -space, then gof: $(X, \tau) \to (Z, \gamma)$ is contra bT^{μ} -continuous function.

Proof Let V be any supra open set in Z, then $g^{-1}(V)$ is bT^{μ} -closed set in Y. since Y is ${}_{bT}T_{c}^{\mu}$ -space, $g^{-1}(V)$ is supra closed set in Y. Since f is bT^{μ} -continuous $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is bT^{μ} -closed set in X. Hence gof is contra bT^{μ} -continuous.

CONTRA BT^µ- IRRESOLUTE FUNCTION

Definition 4.1 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called contra bT^{μ_-} irresolute function if $f^{-1}(V)$ is bT^{μ_-} closed in (X,τ) for every bT^{μ_-} open set V in (Y,σ) .

Definition 4.2 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called perfectly contra bT^{μ} - irresolute function if $f^{-1}(V)$ is bT^{μ} - closed and bT^{μ} - open in (X,τ) for every bT^{μ} - open set V in (Y,σ) .

Theorem 4.3 Every contra bT^{μ} - irresolute function is contra bT^{μ} - continuous.

http://www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

Proof Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be a contra $bT^{\mu_{-}}$ irresolute function. Let V be a supra open set in (Y,σ) . We know that every supra open set is $bT^{\mu_{-}}$ open set , then V is $bT^{\mu_{-}}$ open in (Y,σ) . Since f is contra $bT^{\mu_{-}}$ irresolute function, $f^{-1}(V)$ is $bT^{\mu_{-}}$ closed in (X,τ) . Therefore f is contra $bT^{\mu_{-}}$ continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.4 Let $X=Y=\{a,b,c\}, \tau = \{X,\phi, \{a\}\}, \sigma = \{Y,\phi,\{a\},\{b\},\{a,b\}\}$. A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is defined by f(a) = c, f(b) = b, f(c) = a. Here f is contra bT^{μ} - continuous but not contra bT^{μ} - irresolute. Since $V = \{b,c\}$ is bT^{μ} - open set in (Y,σ) and $f^{-1}(\{b,c\}) = \{a,b\}$ is not in bT^{μ} - closed set in (X,τ) .

Theorem 4.5 If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a bT^{μ}- irresolute and g: $(Y,\sigma) \rightarrow (Z,\gamma)$ is contrabT^{μ}- irresolute function, then gof : $(X,\tau) \rightarrow (Z,\gamma)$ is contrabT^{μ}- irresolute function.

Proof Let V be any bT^{μ} - open set in Z. Since g is contra bT^{μ} - irresolute then g^{-1} (V) is bT^{μ} - closed set in Y. Since f is bT^{μ} - irresolute $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is bT^{μ} - closed set in X. Hence gof is contra bT^{μ} - irresolute function.

Theorem 4.6 If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra bT^{μ} - irresolute and g: $(Y,\sigma) \rightarrow (Z,\gamma)$ is bT^{μ} - irresolute function, then gof : $(X,\tau) \rightarrow (Z,\gamma)$ is contra bT^{μ} - irresolute function.

Proof Let V be any bT^{μ} - open set in Z. Since g is bT^{μ} - irresolute then g^{-1} (V) is bT^{μ} - open set in Y. Since f is contra bT^{μ} - irresolute $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is bT^{μ} - closed set in X. Hence gof is contra bT^{μ} - irresolute function.

Theorem 4.7 Every perfectly contra bT^{μ} - irresolute is contra bT^{μ} - irresolute function.

Proof Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a perfectly contra bT^{μ} - irresolute function. Let V be a bT^{μ} - open set in (Y,σ) . Since f is perfectly contra bT^{μ} - irresolute function, $f^{-1}(V)$ is bT^{μ} - closed and bT^{μ} - open in (X,τ) . Therefore f is contra bT^{μ} - irresolute function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.8 Let $X=Y=\{a,b,c\}$ and $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \sigma = \{Y,\phi,\{b\},\{b,c\},\{a,b\}\}$ f: $(X,\tau)\rightarrow(Y,\sigma)$ be a function defined by f(a) = a, f(b) = c, f(c) = b. Here f is contra bT^{μ} - irresolute function but not perfectly contra bT^{μ} - irresolute function. Since $V = \{a,c\}$ is bT^{μ} - open set in (Y,σ) and $f^{-1}(\{a,c\}) = \{a,b\}$ is not bT^{μ} - closed and bT^{μ} - open set in (X,τ)

Theorem 4.9 Every perfectly contra bT^{μ} - irresolute is contra bT^{μ} - irresolute function.

Proof Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a perfectly contra bT^{μ} - irresolute function. Let V be a bT^{μ} - open set in (Y,σ) . Since f is perfectly contra bT^{μ} - irresolute function, $f^{-1}(V)$ is bT^{μ} - closed and bT^{μ} - open in (X,τ) . Therefore f is bT^{μ} - irresolute function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.10 Let $X=Y=\{a,b,c\}$ and $\tau = \{X,\phi,\{a\}\}, \sigma = \{Y,\phi,\{a\},\{a,b\}\}$ f: $(X,\tau) \rightarrow (Y,\sigma)$ be a identity function. Here f is bT^{μ} - irresolute function but not perfectly contra bT^{μ} - irresolute function. Since $V = \{a,c\}$ is bT^{μ} - open set in (Y,σ) and $f^{-1}(\{a,c\}) = \{a,c\}$ is not bT^{μ} - closed and bT^{μ} - open set in (X,τ) .

REFERENCE

- [1] D.Andrijevic, On b- open sets, mat. Vesnik 48(1996), no.1-2, 59-64.
- [2] R.Devi, S.Sampathkumar and M.Caldas, On supra α open sets and S α continuous maps, General Mathematics, 16(2) (2008), 77-84
- [3] J.Dontchev, Contra- continuous functions and strongly S closed spaces, Int.J.math.Sci., 19(2) (1996), 303-310.
- [4] M.Ganster and I. Rielly, More on almost S- Continuity, Indian J.Math, 41: (1999) 139-146.

http://www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

- [5] K.Krishnaveni and M.Vigneshwaran, On bT-Closed sets in supra topological Spaces, Int.J.Math. Arc. 4(2),2013,1-6.
- [6] A.S.Mashhour, A.A.Allam, F.S.Mohamoud and F.H.Khedr, On supra topological spaces, Indian J. Pure and Appl.Math.No.4, 14 (1983),502-510.
- [7] T. Noiri, On almost continuous functions, Indian. J. Pure. Appl. Math. 20(1989), 571-576.
- [8] O.R. Sayed and Takashi Noiri, On b-open sets and supra b- Continuity on topological spaces, Eur. J. Pure and A pp. Math., 3(2)(2010), 295-302.